

PER-AND POLY FLUOROALKYL SUBSTANCES (PFAS) in SEWAGE SLUDGE

Thet Lei Yee and Assoc. Prof. Jenyuk Lohwacharin

Department of Environmental and Sustainable Engineering Faculty of Engineering, Chulalongkorn University

KEY TERMS

PFAS - Perfluoro And Polyfluoro Alkyl Substances

PFCA - Perfluoro Alkyl Carboxylic Acids

PFOA - Perfluorooctanoic Acid

PFBA - Perfluorobutanoic Acid

PFHxA - Perfluorohexanoic Acid

PFHpA - Perfluoroheptanoic Acid

PFNA - Perfluorononanoic Acid

PFDA - Perfluorodecanoic Acid

PFUnA - Perfluoroundecanoic Acid

PFDoDa - Perfluorododecanoic Acid

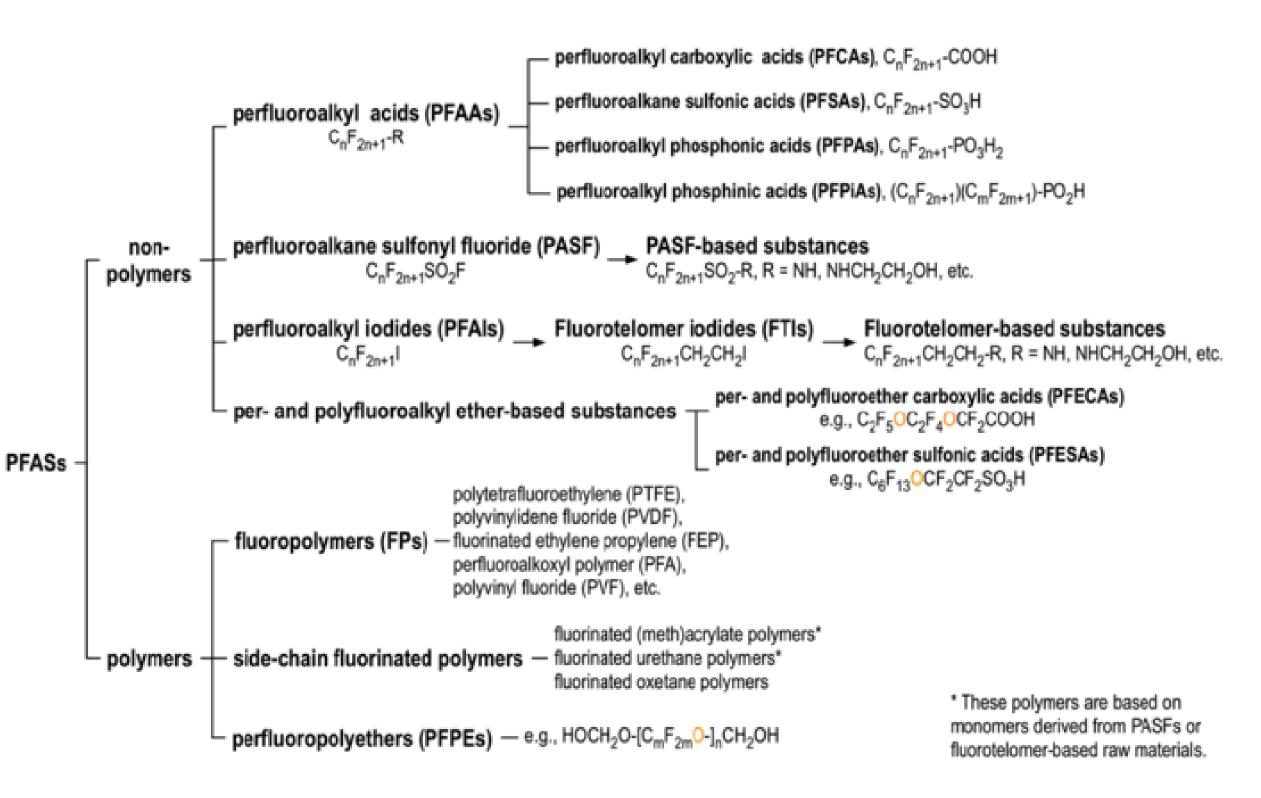
PFTreA - Perfluorotridecanoic Acid

PFTA - Perfluorotetradecanoic Acid

PFPA - Perfluoropropanoic Acid

PFPeA - Perfluoropentanoic Acid

PFSA- Perfluoro Alkane Sulfonic Acids


PFOS - Perfluorooctane Sulfonic Acid

PFBS - Perfluorobutane sulfonic acid

PFHxS - Perfluorohexane sulfonic acid

PFDS - Perfluorodecane sulfonic acid

Per- and polyfluoroalkyl substances (PFASs)

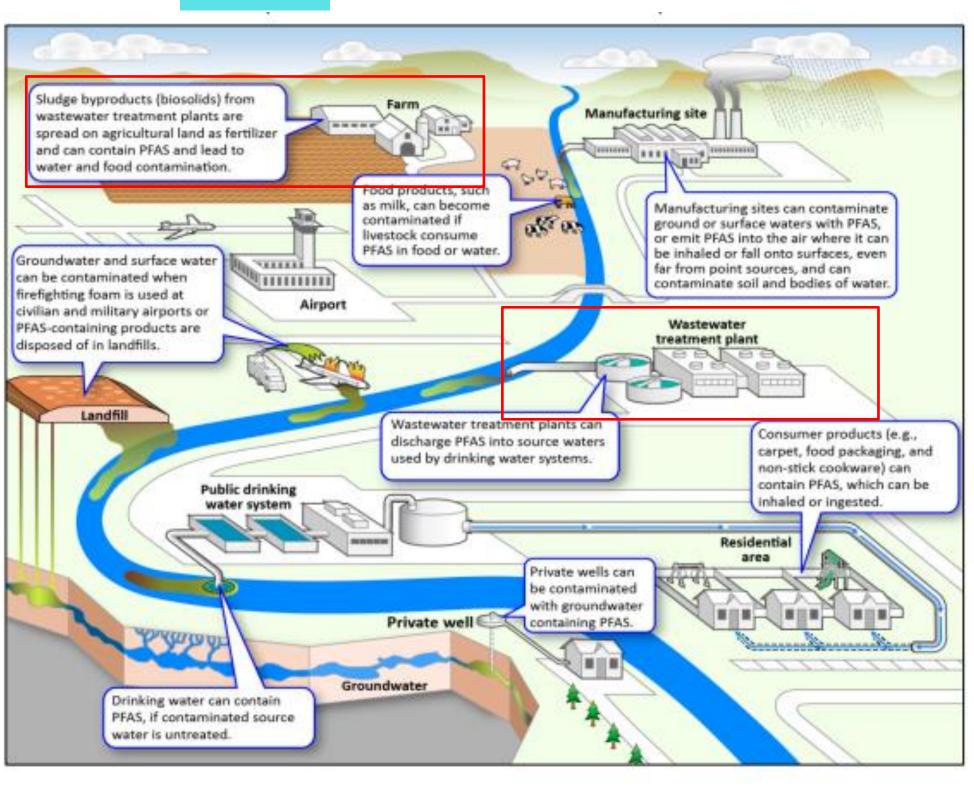
Source: OECD, 2015

TABLE OF CONTENTS

01

INTRODUCTION

THERMAL
DEGREDATION OF
PFAS



PFAS
OCCURRENCE IN
SEWAGE SLUDGE

CHALLENGES & OPPORTUNITIES

1 INTRODUCTION

Possible Routes For PFAS Release Into The Environment

Source: United States Government Accountability Office, 2022

- ✓ Highly Persistent
- ✓ Long Range Transport Potential
- ✓ Bioaccumulation Potential
- ✓ Endocrine Activity
- ✓ Human Health Effects

PFOS -Restriction

PFOA - Elimination

PFHxS – Elimination

"A perfluorocarbon chain bonded to fluorine atoms at most (polyfluoroalkyl) or all available bonding sites (perfluoroalkyl) and connected to functional groups on both ends."

Buck et al. (2011) and the OECD (2018)

PFAAs (PFOA,PFOS, PFNA and PFHxS) are found at ppb level in bloods of 97 % residents in industrialized nations.

Source: TWI Limited

PFAS SAFE LIMITS (US EPA)

DRINKING WATER

2016

US EPA established nonregulatory health advisories of 70 ng/L (C8 PFAAs)

2022

Updated the health advisory

- PFOA 0.004 ng/L*
- PFOS 0.02 ng/L*
- Gen X 10 ng/L
- PFBS 2 µg/L

Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), PFOA and PFOS are classified as hazardous substances. (April, 2024)

2024

Announced the final National Primary

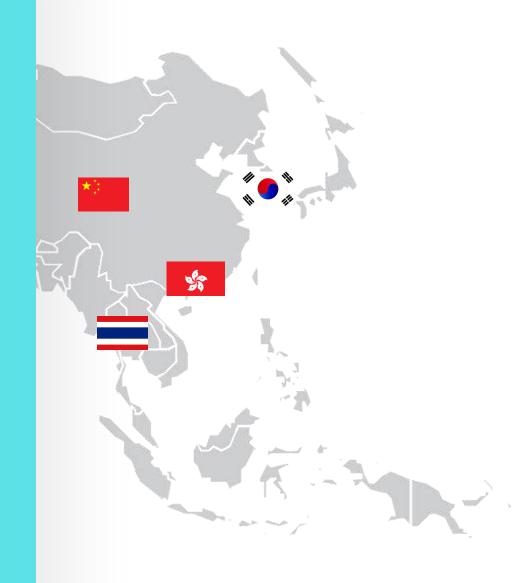
Drinking Water Regulation for six PFAS

- PFOA 4 ng/L
- PFOS 4 ng/L
- Gen X 10 ng/L
- PFHxS 10 ng/L
- PFNA 10 ng/L
- PFAS mixtures Hazard Index 1
 (At least 2 or more of PFHxS, PFNA, GenX, and PFBS)

Source: Zhou et al., 2024

PFAS LIMITS (SOIL & SLUDGE)

Media	Country	PFAS	Regulation value					
			(ng/g dw)					
Soil	Queensland,	PFOS	1					
	Australia	PFOS+PFHxS	2					
		PFHxS	3					
		PFOA	4					
		PFBA, PFPeA	1					
		PFHxA						
		Sum C9 -C14	10					
		PFCA						
		PFSA	1					
		n:2 FTS	4					
	USA	PFOS	5.2					
		PFOA	2.5					
		PFBS	1900					
	Canada	PFOS	10					
	Norway	PFOS	100					
	The Netherlands	PFOS	2.3					
	Denmark	PFOS	390					
		PFOA	1300					
		PFOSA	390					
Sewage	United Kingdom	PFOS	46					
Sludge	Austria	PFOS+PFOA	100					
Soil	Germany	PFOS+PFOA	100					

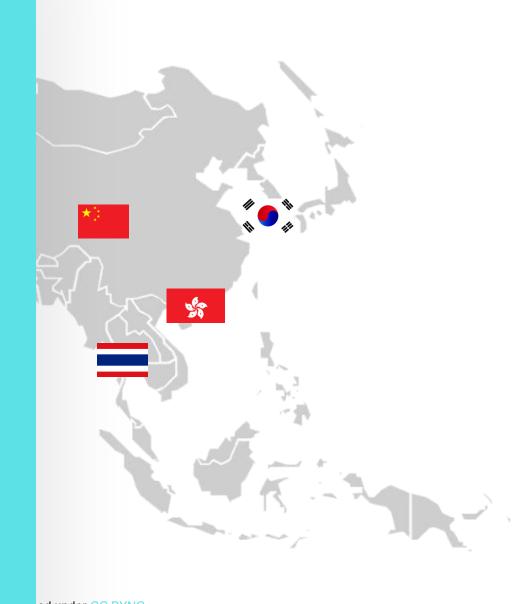

02

PFAS OCCURRENCE IN SLUDGE (ASIA)

Studies	Location	Year	WWTP	No of PFAS	Perfluoroalkyl Carboxylic Acids													
						PFBA	PFHxA	PFHpA	PFNA	PFDA	DFI In A	PFD0A/ PFDoD A	PFTre A		PFTrDA/ PFTriA	PFPA	PFPeA	PFPrA
This Study	Thailand	2024	Municipal	11	V		V		V	V	$ \overline{\mathcal{A}} $		$ \overline{\mathcal{A}} $					
(Kunacheva et al., 2011)	Thailand	2011	Industrial	10	Ø		\square	V	Ø	Ø	V	$\overline{\mathbf{Q}}$				Ø		
(Kwon et al., 2017)	South Korea	2017	Combined	12	Ø			V	Ø	Ø	V	\square			V			
(Ruan et al., 2015)	China	2010	Municipal	15	V	V	V	V	V		V	V		V		V	V	Ø
(Ma & Shih, 2010)	Hong Kong	2010	Municipal	14	V	V	V	V	I	V	V	7		V	V		V	

Globally, PFAS in sludge ranges from 2.1 to 500,000 ng/g (Saliu & Sauvé, 2024; Zhou et al., 2024)

At least 10 analytes of PFAS were detected in sewage sludge.



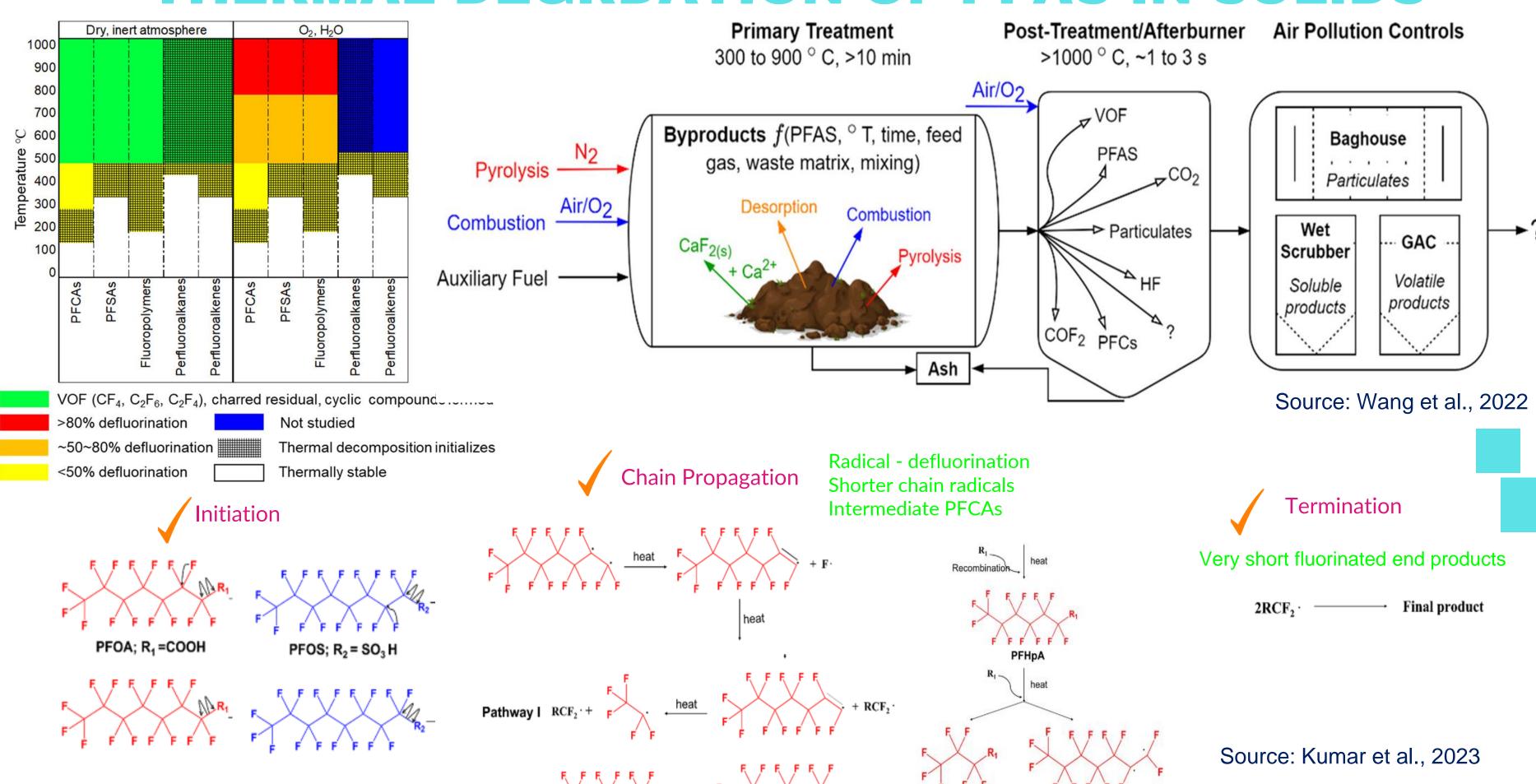
02

PFAS OCCURRENCE IN SLUDGE (ASIA) (Cont.)

Studies	Location	Year	WWTP	No of PFAS		Perfluor	oalkyl Sulfon	ic Acids		PFOA alternative	PFOA precursor	Ultra short- chain PFCA	
					PFOS	PFBS	PFHpS	PFHxS	PFDS	NEt FOSAA	Gen X	FOUEA	TFA
This Study	Thailand	2024	Municipal	11	☑	☑		☑			☑		
(Kunacheva et al., 2011)	Thailand	2011	Industrial	10	V			V					
(Kwon et al., 2017)	South Korea	2017	Combined	12	√			V	✓	√		√	
(Ruan et al., 2015)	China	2010	Municipal	15	\checkmark	\checkmark		☑					V
(Ma & Shih, 2010)	Hong Kong	2010	Municipal	14		\square							

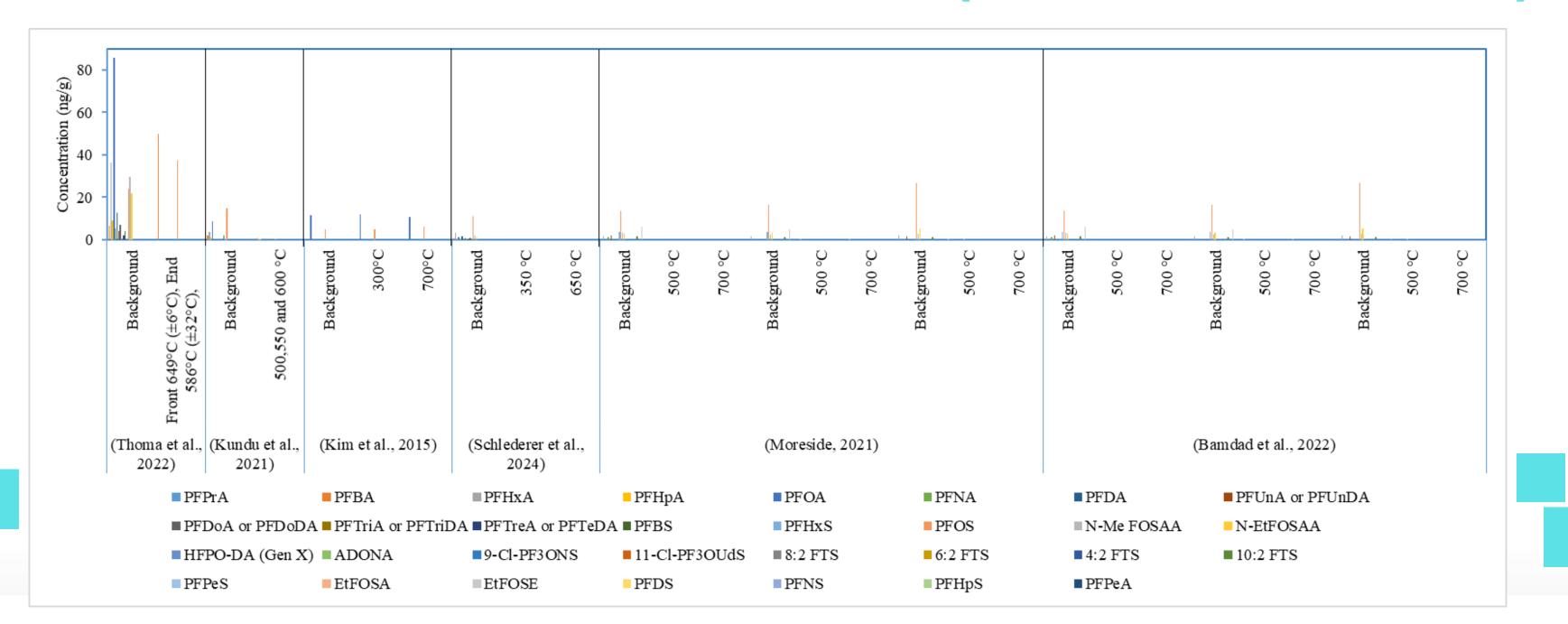
Gen X, introduced in 2009 as a replacement for PFOA, has been detected in Thailand's sewage sludge, reflecting the growing use of newer PFAS compounds.

03



PFAS IN SOLID TREATMENT TECHNOLOGIES

- Solidification and Stabilization
 (Addition of Binders, Sorbents)
- Separation Technologies
 (Soil Washing or Solvent Extraction)
- Thermal Destruction


(Commercial Incinerators, Municipal Waste Combustors, Soil Desorbers, Pyrolyzers)

THERMAL DEGRDATION OF PFAS IN SOLIDS

Pathway I

PYROLYSIS OF PFAS SLUDGE (SOLID RESIDUES)

- ✓ High temperatures (700–800°C): PFAS in solids effectively decrease but are detected in liquid and gas by-products.
- ✓ Low temperatures (300–500°C): Several PFAS persists at trace level across all end products.
- ✓ Short-chain PFAS and PFOS: Frequently detected, often at higher concentrations than initially present.

- ✓ There is significant potential to better understand PFAS in thermal degradation
- ✓ More research is needed to optimize thermal treatment conditions for PFAS
- ✓ Non-catalytic pyrolysis is wellstudied, but catalytic approaches have been less explored
- ✓ Analytical methods are needed to close the fluorine mass balance

- ✓ Deepening Understanding of PFAS Fate
- ✓ Catalyst Development
- ✓ Analytical Advancements
- ✓ Optimization of Thermal Techniques

Q & A