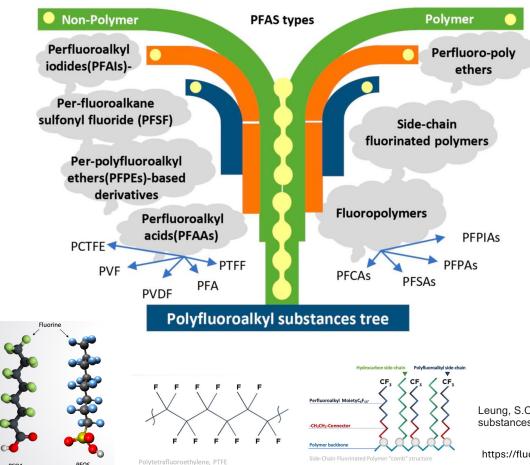


Ong-art Thanetnit, Ph.D.

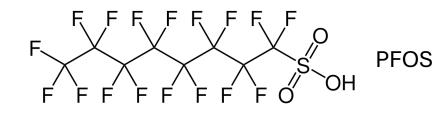

Center for Safety, Health and Environment

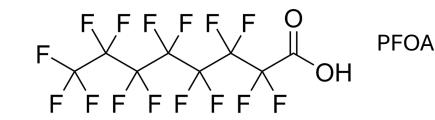
of Chulalongkorn University

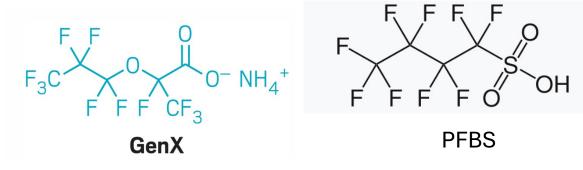
30 November 2024

1. Getting to Know Per- and Polyfluoroalkyl Substances (PFAS)

1.1 What are PFAS?

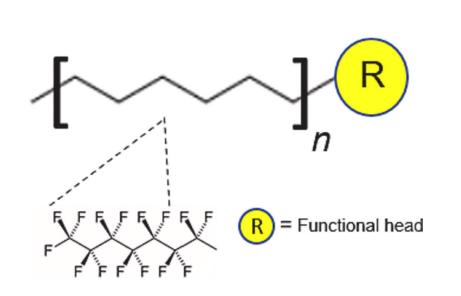



- PFAS is an acronym for per- and polyfluoroalkyl substances.
- A group of synthetic organofluorine chemical compound.
- PFAS are defined as fluorinated substances that contain at least one fully fluorinated methyl or methylene carbon atom.
- PFAS are referred to as "forever chemicals" because of their persistence in the environment.
- There are thousands of different PFAS, some of which have been more widely used and studied than others


Leung, S.C.E., Wanninayake, D., Chen, D., Nguyen, N.T. and Li, Q., 2023. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS)-Challenges and opportunities in sensing and remediation. *Science of The Total Environment*, p.166764.

https://fluoropolymers.eu/wp-content/uploads/2023/12/Fluoropolymers-versus-Side-Chain-Fluorinated-Polymers.pdf

1.1 What are PFAS?

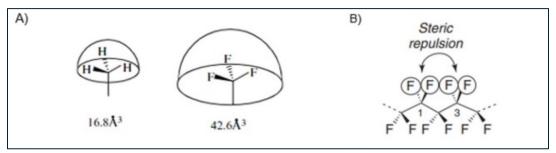

1. Getting to Know Per- and Polyfluoroalkyl Substances (PFAS):

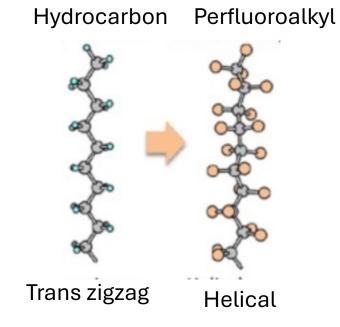
- Industrial uses of PFAS have extended to > 200 diverse applications of > 1400 individual PFAS
- Some example of PFAS,
 - PFOS: Perfluorooctane sulfonic acid
 - PFOA: Perfluorooctanoic acid
 - GenX
 - PFBS
 - perfluorohexane sulfonate (PFHxS)
- POPs (Stockholm Convention for the protection of human health and the environment from persistentorganic pollutants):
 - PFOS (2009) and
 - PFOA (2019)

Leung, S.C.E., Wanninayake, D., Chen, D., Nguyen, N.T. and Li, Q., 2023. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS)-Challenges and opportunities in sensing and remediation. *Science of The Total Environment*, p.166764.

https://cen.acs.org/environment/persistent-pollutants/US-EPA-deems-two-GenX-PFAS-chemicals-more-toxic-than-PFOA/99/i40

1.2 Properties of PFAS


Structure of PFAS molecule


1. Getting to Know Per- and Polyfluoroalkyl Substances (PFAS):

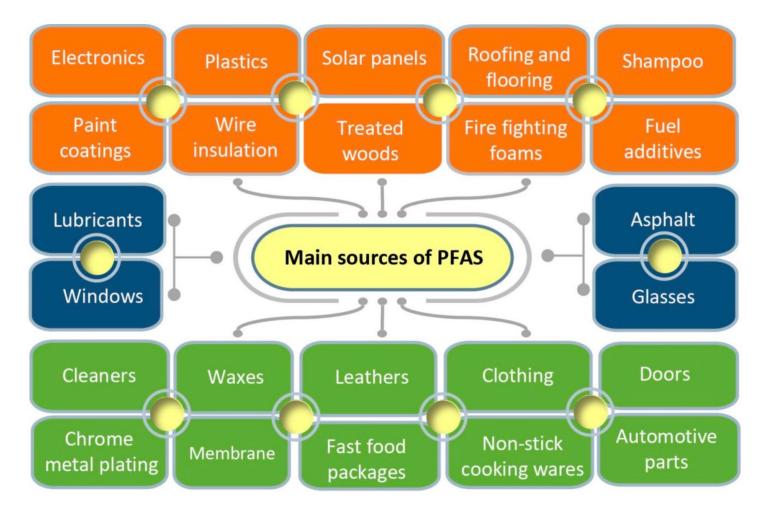
- A perfluorinated chain (R_f) is essentially an alkyl chain with all the hydrogen atom replaced by fluorine atoms and the head can be a sulfonate or carboxylate.
- Fluorine is the most electronegative element, and when bonded to carbon, forms one of the strongest and the most inert single bonds found in organic compounds.
- The three lone pairs of fluorine atoms and the negative partial charge create a steric shield and an electrostatic shield. Kinetic stability is achieved through the shielding of the central carbon atom by the fluorine which safeguards PFAS against nucleophilic attack of the central carbon atom

Leung, S.C.E., Wanninayake, D., Chen, D., Nguyen, N.T. and Li, Q., 2023. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS)-Challenges and opportunities in sensing and remediation. *Science of The Total Environment*, p.166764.

1.2 Properties of PFAS

1. Getting to Know Per- and Polyfluoroalkyl Substances (PFAS):

- Due to the larger radious of fluorine (1.47 Å) when compared to hydrogen (1.20 Å), steric congestion happens when all of hydrogen atoms in the $R_{\rm f}$ are replaced by fluorine atoms, leading to a dramatic change in the conformation of the molecule.
- PFAS show very weak intramolecular and intermolecular interactions due to the low polarizability of fluorine,



Leung, S.C.E., Wanninayake, D., Chen, D., Nguyen, N.T. and Li, Q., 2023. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS)-Challenges and opportunities in sensing and remediation. *Science of The Total Environment*, p.166764.

1. Getting to Know Per- and Polyfluoroalkyl Substances (PFAS):

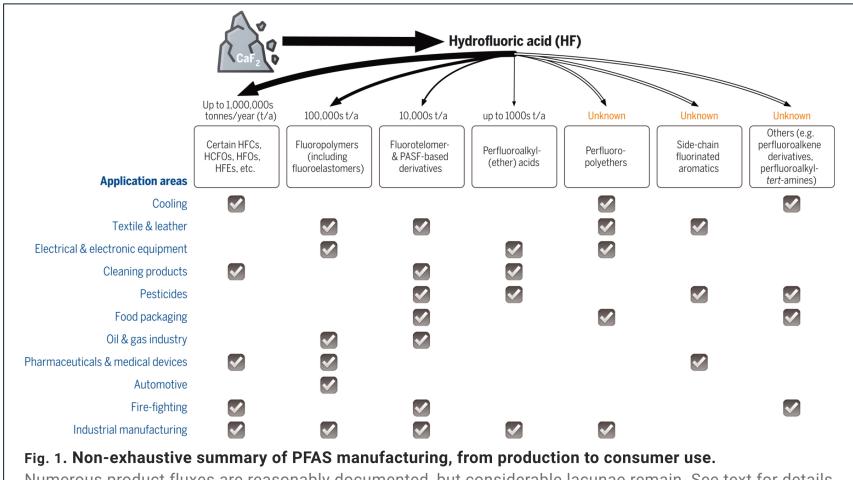
1.3 PFAS Can Be Found in Many Places

https://static.ewg.org/ewg-tip-sheets/EWG-

AvoidingPFCs.pdf?_gl=1*3mu2k6*_gcl_au*MjA3Mzg3NDAzMy4xNzMyNjYzMzc5*_ga*MTc3MjM5OTgwOS4xNzMyNjYzMzgw*_ga_CS21G C49KT*MTczMjc4MzAzNS43LjEuMTczMjc4MzAzNy41OC4wLjU1MDM0Mjl2MA..

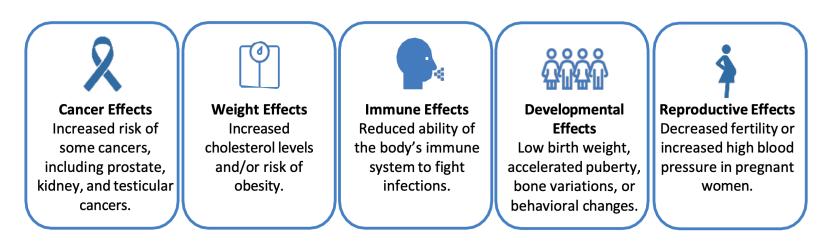
TESTS BY GREENPEACE FOUND PFAS CHEMICALS IN:

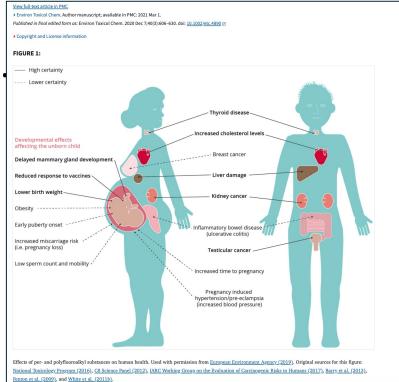
Jackets made by:	Shoes from:	Swimwear from:	
NORTH FACE	NIKE	DISNEY	
PATAGONIA	PUMA	BURBERRY	
ADIDAS	ADIDAS	\sim	
COLUMBIA			
JACK WOLFSKIN			
	11 min		
FEFE	THE WRISTBAND OF THE NEW APPLE WATCH SPORT MODEL IS ALSO MADE WITH PFAS CHEMICALS, according to promotional information from the company.		
Do your research, especially when buying outdoor gear, and choose clothing that doesn't carry Gore-Tex or Teflon tags.	AVOID PTFE-BASI NONSTICK PANS KITCHEN UTENSI	AND	


BE WARY OF ALL FABRICS LABELED STAIN- OR WATER-REPELLENT, even when they don't carry a

Opt for stainless steel or cast iron instead.

1. Getting to Know Per- and Polyfluoroalkyl Substances (PFAS):

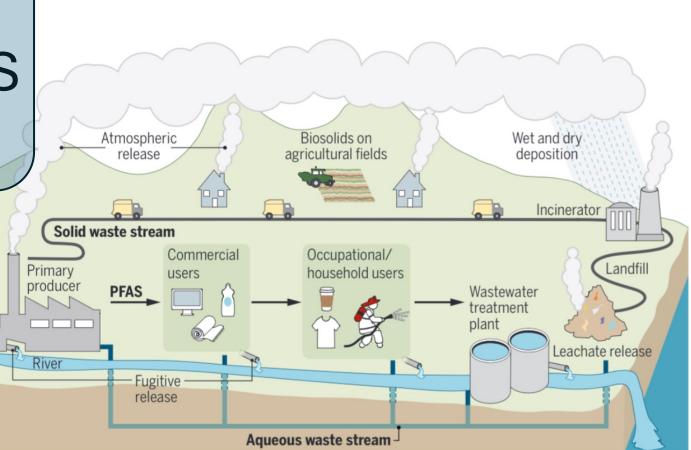



Numerous product fluxes are reasonably documented, but considerable lacunae remain. See text for details and citations. HFC, hydrofluorocarbon; HCFO, hydrochlorofluoroolefin; HFO, hydrofluoroolefin; HFE, hydrofluoroether; PASF, perfluoroalkanesulfonyl fluoride.

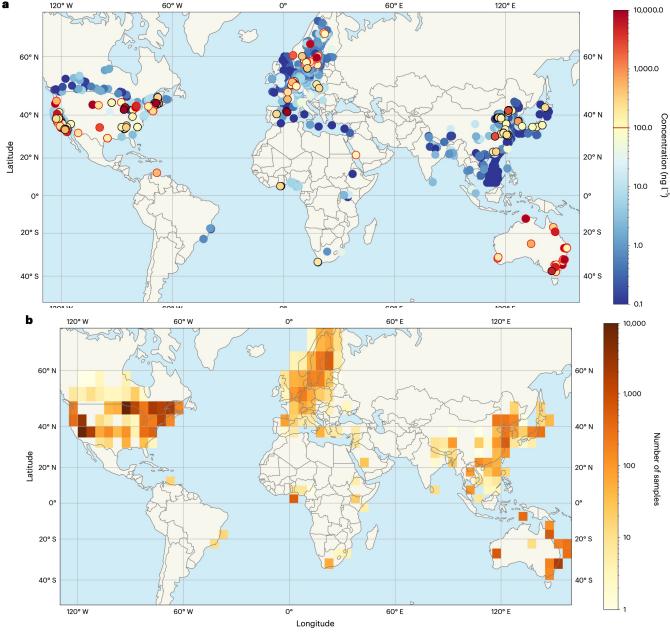
2. The Dangers of PFAS Chemicals

2.1 Are PFAS Safe?

 Ongoing research aims to understand how exposure to various PFAS contributes to different health effects. Studies indicate that certain levels of PFAS exposure could result in

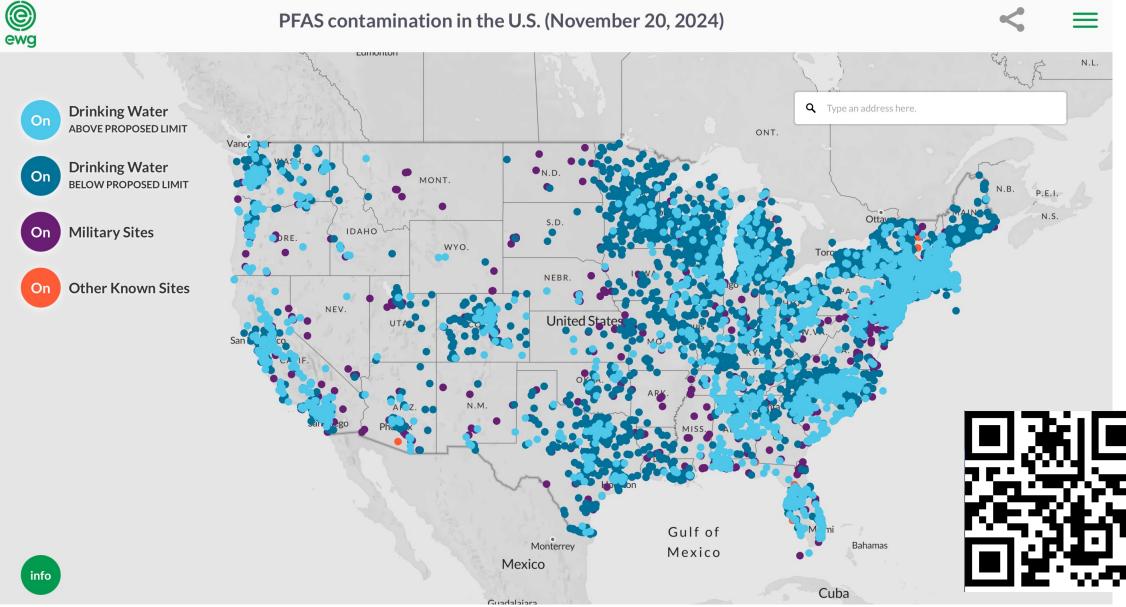


2.2 People Can Be Exposed to PFAS


- Working in occupations such as firefighting or chemicals manufacturing and processing.
- Using products made with PFAS or that are packaged in materials containing PFAS.
- Drinking water contaminated with PFAS.
- Eating certain foods that may contain PFAS
- Swallowing contaminated soil or dust.
- Breathing air containing PFAS.

2.3 Certain People May Have Higher Exposure to PFAS

- Adults: Some people have higher exposures to PFAS than others because of their jobs or where they live. For example:
 - Industrial workers who are involved in making or processing PFAS or people who live or recreate near PFAS-producing facilities.
 - Pregnant and lactating women tend to drink more water per pound of body weight.
- **Children:** Because children are still developing, they may be highly sensitive to the harmful effects of chemicals such as PFAS.
 - Drinking more water, eat more food, and breathe more air per pound of body weight
 - Crawling on floors and putting things in their mouths.



The PFAS life cycle. PFAS product flows from primary producer to commercial user to consumers to disposal. Each step is attended by atmospheric and aqueous fugitive releases. Soils constitute a long-term environmental sink, slowly releasing PFAS to the hydrosphere and allowing uptake in biota, but the ultimate reservoir is deep marine sediment.

Fig. 1 | **Global map of PFAS concentration in water. a**, Sum of concentration of 20 PFAS subject to EU guidance in surface water, groundwater and drinking water samples. Those above the EU drinking water limit of 100 ng Γ^1 (marked red on

scale bar) are circled in red (for known contamination sources (for example, AFFF or non-AFFF)) or black (unknown sources). **b**, Number of PFAS samples available on a 5° longitude/latitude grid worldwide.

https://tinyurl.com/2mvwnjf6

3. The Current Severity of PFAS Contamination บัญชีรายชื่อวัตถุอันตรายแนบท้ายประกาศกระทรวงอุตสาหกรรม เรื่อง บัญชีรายชื่อวัตถุอันตราย (ฉบับที่ ๗) พ.ศ. ๒๕๖๕ บัญชี ๕ ที่กรมโรงงานอุตสาหกรรมรับผิดชอบ

บัญชี ๕.๑ รายชื่อสารควบคุม

ลำดับที่	ชื่อวัตถุอันตราย	เลขทะเบียน ซีเอเอส (CAS No.)	ชนิดของ วัตถุอันตราย	เงื่อนไข
202	ไตรเอทาโนลามีน (triethanolamine)	102-71-6	3	วัตถุอันตรายควบคุมตามบัญชี 3B (precursors)
				ในภาคผนวกแนบท้ายอนุสัญญาห้ามอาวุธเคมี เฉพาะที่มีความเข้มข้น
				มากกว่าร้อยละ 30 โดยน้ำหนัก (> 30% w/w)
247	เบนซิลไซยาไนด์ (benzyl cyanide)	140-29-4	3	
	กรดเปอร์ฟลูออโรออกตะโนอิค เกลือของกรดเปอร์		3	เฉพาะที่นำไปใช้เพื่อวัตถุประสงค์อย่างหนึ่งอย่างใดดังต่อไปนี้
	ฟลูออโรออกตะโนอิค และสารประกอบที่เกี่ยวข้องของ			1. ใช้ในการเคลือบป้องกั้นการสะท้อนแสงในกระบวนการ
	กรดเปอร์ฟลูออโรออกตะโนอิค (perfluorooctanoic			photolithography และกระบวนการเอชซิ่ง (etch processes)
	acid (PFOA), its salts and perfluorooctanoic			ในการผลิตเซมิคอนดักเตอร์
	acid (PFOA)-related compounds) ได้แก่			2. ใช้ในการเคลือบภาพถ่ายที่ใช้กับฟิล์ม
526	กรดเปอร์ฟลูออโรออกตะโนอิค	335-67-1		3. ใช้ในสิ่งทอสำหรับป้องกันการเปียกและซึมของน้ำและน้ำมัน
	(perfluorooctanoic acid)			เพื่อป้องกันอันตรายแก่ผู้ปฏิบัติงานจากของเหลวที่เป็นอันตรายและ
527	แอมโมเนียมเปอร์ฟลูออโรออกตะโนเอต	3825-26-1		มีความเสี่ยงต่อสุขภาพ เพื่อความปลอดภัยในการทำงาน
	(ammonium perfluorooctanoate)			4. ใช้ในโฟมดับเพลิงสำหรับดับไอน้ำมันเชื้อเพลิงเหลวและเพลิงไหม้
528	โซเดียมเปอร์ฟลูออโรออกตะโนเอต	335-95-5		เชื้อเพลิงเหลว (Class B fires) ที่มีระบบที่ติดตั้งอยู่แล้ว รวมทั้งแบบ
	(sodium perfluorooctanoate)			เคลื่อนที่และแบบติดยึด
529	โพแทสเซียมเปอร์ฟลูออโรออกตะโนเอต	2395-00-8		5. ใช้ในการผลิต polytetrafluoroethylene (PTFE) และ polyvinylidene
	(potassium perfluorooctanoate)			fluoride (PVDF) สำหรับการผลิตอุปกรณ์ที่นำความร้อนเหลือทิ้งจาก
530	ซิลเวอร์เปอร์ฟลูออโรออกตะโนเอต	335-93-3		อุตสาหกรรมกลับมาใช้ประโยชน์ หรือน้ำยาเคลือบสำหรับป้องกัน
	(silver perfluorooctanoate)			การรั่วไหลของสารอินทรีย์ระเหยและฝุ่นละออง PM2.5

บัญชีรายชื่อวัตถุอันตรายแนบท้ายประกาศกระทรวงอุตสาหกรรม เรื่อง บัญชีรายชื่อวัตถุอันตราย (ฉบับที่ ๗) พ.ศ. ๒๕๖๕ บัญชี ๕ ที่กรมโรงงานอุตสาหกรรมรับผิดชอบ

ลำดับที่	ชื่อวัตถุอันตราย	เลขทะเบียน ซีเอเอส (CAS No.)	ชนิดของ วัตถุอันตราย	เงื่อนไข
531	เปอร์ฟลูออโรออกตะโนอิลฟลูออไรด์	335-66-0		6. ใช้ในการผลิต polyfluoroethylene propylene (FEP) สำหรับ
	(perfluorooctanoyl fluoride)			การผลิตสายไฟฟ้าแรงสูง และสายเคเบิลสำหรับส่งกระแสไฟฟ้า
532	เมทิลเปอร์ฟลูออโรออกตะโนเอต	376-27-2		7. ใช้ในการผลิต fluoroelastomers สำหรับการผลิตโอริง (O-rings),
	(methyl perfluorooctanoate)			สายพานวี (v-belts) และชิ้นส่วนพลาสติกสำหรับตกแต่งภายใน
533	เอทิลเปอร์ฟลูออโรออกตะโนเอต	3108-24-5		รถยนต์
	(ethyl perfluorooctanoate)			
	กรดเปอร์ฟลูออโรออกตะโนอิค และเกลือของกรดเปอร์			เฉพาะที่ไม่เข้าเงื่อนไขการเป็นวัตถุอันตรายชนิดที่ 3 ลำดับที่ 526-530
	ฟลูออโรออกตะโนอิค (perfluorooctanoic acid		4	โดยให้ได้รับการยกเว้นสำหรับที่เป็นสารปนเปื้อน (Impurity) ดังนี้
	(PFOA) and its salts) ได้แก่			1. ความเข้มข้นไม่เกินร้อยละ 0.0000025 โดยน้ำหนัก
534	กรดเปอร์ฟลูออโรออกตะโนอิค	335-67-1		(≤ 0.000025% w/w) หรือ
	(perfluorooctanoic acid)			2. มีอยู่ในผงไมโครพอลิเตตราฟลูออโรเอทิลีน (PTFE) ที่ผลิตขึ้น
535	แอมโมเนียมเปอร์ฟลูออโรออกตะโนเอต	3825-26-1		โดยการฉายรังสีไอออไนซ์หรือโดยการย่อยสลายด้วยความร้อน
	(ammonium perfluorooctanoate)			ความเข้มข้นไม่เกินร้อยละ 0.0001 โดยน้ำหนัก (≤ 0.0001% w/w)
536	โซเดียมเปอร์ฟลูออโรออกตะโนเอต	335-95-5		
	(sodium perfluorooctanoate)			
537	โพแทสเซียมเปอร์ฟลูออโรออกตะโนเอต	2395-00-8		
	(potassium perfluorooctanoate)			
538	ซิลเวอร์เปอร์ฟลูออโรออกตะโนเอต	335-93-3		
	(silver perfluorooctanoate)			

				-	
	References	Sampling sites	Samples (n)	PFOS (median)	PFOA (median)
Water	Kunacheva et al. 2010	WTPs in Bangkok, Thailand	Raw water (2)	4.10 & 4.48	14.44 & 18.64
(ng/L)		Gas stations across Bangkok, Thailand	Tap water (28)	<0.03-0.45	< 0.03-7.75
		Convenient stores in Bangkok, Thailand	Bottled water (20)	<0.03-0.59	0.97-20.13
	Boontanon et al. 2012	Chao Phraya river, Bangkok, Thailand	Raw water (96)	<0.04-20.05	0.68-20.41
		Bangkok, Thailand	Tap water (14)	<0.04-1.10	-
		Bangkok, Thailand	Bottled water (14)	0.10-1.20	-
	Domingo et al. 2012	Municipal water supply of Girona, Spain	Raw water (4)	<0.05-2.30	<0.40-32.8
		Municipal water supply of Barcelona, Spain	Raw water (10)	0.18-20.20 (2.65)	<0.72-9.50 (4.40)
			Drinking fountain (5)	<0.50-6.20 (5.10)	1.00-9.60 (5.80)
	Zafeiraki et al. 2015	Water supply in cities across Greece	Tap water (43)	< 0.60	<0.60-3.63 (0.90)
			Bottled water (5)	<0.60	<0.60
		Water supply in cities across Netherlands	Tap water (37)	<0.60-5.00 (4.00)	<0.60-11.10 (4.30)
			Bottled water (5)	<0.60	<0.60
	Li et al. 2019	Municipality/town in Shanghai, China	Tap water (2)	0.21 & 0.32	0.76 & 0.79
		Cities/town in Hunan, China	Tap water (3)	0.22-0.41 (0.29)	0.15-0.51 (0.50)
		Cities/town in Sichuan, China	Tap water (3)	0.30-0.34 (0.33)	0.76-0.77 (0.76)
	Boone et al. 2019	Drinking water treatment plants	Raw water (29)	<0.13-48.30 (2.28)	<0.56-112 (6.32)
		across 24 states of the United States.	Tap water (29)	<0.13-36.90 (1.62)	<0.56-104 (4.15)
	This Study	Map Ta Phut Industrial Estate area,	River water (16)	4.48-465.65 (17.94)	1.27-59.29 (8.97)
		Rayong, Thailand	Tap water (4)	7.10-54.16 (14.47)	0.89-3.26 (1.39)
			Bottled water (5)	<0.125-0.45	<0.25-0.62

ที่มา: Lertassavakorn, T.; Pholphana, N.; Rangkadilok, N.; Suriyo, T.; Satayavivaad, J. Determination of perfluorooctane sulphonate and perfluorooctanoic acid in seafood and water from Map Ta Phut industrial estate area, Thailand. Food Additives & Contaminants: Part A 2021, 2; 1-16.

	References	Sampling sites	Samples (n)	PFOS (median)	PFOA (median)
Seafood	Domingo et al. 2012	Coastal areas of Catalonia (Barcelona, Girona, and Tarragona), Spain	Mussel (3)	<45 ^a	<68 ^a
ng/kg	5		Prawn (3)	480	98
ww)			Sardine (3)	8320	<76*
	Vassiliadou et al. 2015	Local fish markets in Athens (Kallithea), Greece	Finfish (7)	<490 ^a -20370	<600 ^a
			Shellfish (3)	<490 ^a -5150	<600 ^a
	Habibullah-Al-Mamun	Four major coastal areas (Cox's Bazar, Chittagong, Bhola	Finfish (32)	100-3860	<10 ^a -400
	et al. 2017	andSundarbans of Bangladesh)		(625)	(90)
			Shrimp (8)	100-750	70-1250
				(360)	(260)
			Crab (8)	160-1990	230-2390
				(590)	(875)
	Chen et al. 2018	Traditional markets in	Oyster (10)	(380)	(5710)
		Taipei City, Taiwan	Shrimp (10)	(120)	(8230)
			Squid (10)	1060 ^b	(6400)
	Guo et al. 2019	Along Bohai sea coast, China	Oyster (47)	4-920 °	30-1600
			Mussel (9)	4-2060 °	10-330
	Catherine et al. 2019	French coast (English Channel)	Mussel/Oyster (84)	8-218 (10)	<loq< td=""></loq<>
		French coast (Atlantic Ocean)	Mussel/Oyster (84)	15-181 (84)	<loq< td=""></loq<>
		French coast (Mediterranean Sea)	Mussel (42)	7-162 (35)	<loq< td=""></loq<>
	This Study	Local markets in Map Ta Phut	Mussel (8)	29-606 (87)	<48
		Industrial Estate area, Rayong, Thailand	Spotted Babylon (5)	1085-3287 (1786)	<48
			Squid (4)	2815–6724 (3886)	<48
			Pacific white shrimp (4)	46-92 (60)	<48

^aLOD levels.

^bPFOS was found in only one sample.

^cThe sum of PFOS and its precursors.

ที่มา: Lertassavakorn, T.; Pholphana, N.; Rangkadilok, N.; Suriyo, T.; Satayavivaad, J. Determination of perfluorooctane sulphonate and perfluorooctanoic acid in seafood and water from Map Ta Phut industrial estate area, Thailand. Food Additives & Contaminants: Part A 2021, 2; 1-16.

แผนภูมิแสดงการเปรียบเทียบปริมาณเฉลี่ยของสาร PFOS และ PFOA ในตัวอย่างพลาสมาของประชากรทั่วไป ของแต่ละประเทศ

ที่มา : Lertassavakorn, T.; Pholphana, N.; Rangkadilok, N.; Suriyo, T.; Teeyapant, P.; Satayavivad, J. Method validation for quantification of PFOS and PFOA in human plasma and a pilot study in blood donors from Thai Red Cross Society. Toxics 2023, 11, 1015.

Administrative Recommendation Setting of Several Nations for Controlling PFAS Level in the Water

Table 1 The PFOS/PFOA concentration limits in the USA as well as in other countries

State/country	PFOS (ng/L)	PFOA (ng/L)	Other PFAS	Year	Source
Alabama	200	400		2009	USEPA
USEPA	70	70		2016	USEPA
Australia	70	560		2017	ADEH
Canada	600	200		2018	CAN HC
Denmark	100	100	PFNA, PFBA/S, PFHxS/A, PFPeA, PFHpA, PFOSA, PFDA, 6:2 FTS	2015	EPA
Germany	300	300		2006	GMOH
Italy	30	500	PFBA, PFBS, PFHxA, PFPeA	2017	
Netherlands	200	390	Gen-X	2020	EPA
Sweden	90	90	PFBS, PFHxS, PFHxA, PFPeA, PFHpA	2014	NFA
United Kingdom	10	10		2021	UKDWI

Final MCLG	Final MCL (enforceable levels)
Zero	4.0 parts per trillion (ppt) (also expressed as ng/L)
Zero	4.0 ppt
10 ppt	10 ppt
10 ppt	10 ppt

10 ppt

1 (unitless)

Hazard Index

10 ppt

Hazard Index

Compound

PFOA PFOS

PFHxS PFNA

HFPO-DA (commonly known as GenX Chemicals)

Mixtures containing two or more of PFHxS, PFNA, HFPO-DA, and PFBS

On April 10, 2024, EPA announced the final National Primary Drinking Water Regulation (NPDWR) for six PFAS.

Leung, S.C.E., Wanninayake, D., Chen, D., Nguyen, N.T. and Li, Q., 2023. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS)-Challenges and opportunities in sensing and remediation. *Science of The Total Environment*, p.166764

- In August 2022, the EPA proposed to add PFOA and PFOS to its list of hazardous substances under the Superfund law. EPA issued a final rule in April 2024, which requires that polluters pay for investigations and cleanup of these substances
- In April 2024, the EPA issued a final drinking water rule for PFOA, PFOS, Gen X, PFBS, PFNA, and PFHxS. Within three years, public water system must remove these six PFAS to nearzero levels.